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A set of integro-differential equations in the Lagrangian renormalized approximation
(Kaneda 1981) is rederived by applying a perturbation method developed by Kraich-
nan (1959), which is based upon an extraction of direct interactions among Fourier
modes of a velocity field and was applied to the Eulerian velocity correlation and re-
sponse functions, to the Lagrangian ones for homogeneous isotropic turbulence. The
resultant set of integro-differential equations for these functions has no adjustable
free parameters. The shape of the energy spectrum function is determined numerically
in the universal range for stationary turbulence, and in the whole wavenumber range
in a similarly evolving form for the freely decaying case. The energy spectrum in
the universal range takes the same shape in both cases, which also agrees excellently
with many measurements of various kinds of real turbulence as well as numerical
results obtained by Gotoh et al. (1988) for a decaying case as an initial value problem.
The skewness factor of the longitudinal velocity derivative is calculated to be −0.66
for stationary turbulence. The wavenumber dependence of the eddy viscosity is also
determined.

1. Introduction
One of the main objectives of the statistical theory of turbulence is to derive the

statistical averages of field quantities, such as the mean velocity distribution, the
velocity correlation (or the energy spectrum) function, etc., systematically from first
principles, i.e. the Navier–Stokes equation. It has long been known, however, that
the equations for velocity moments are never closed by simple averaging procedures
because of nonlinearity with respect to the velocity of the governing equations. There
is a long history of attacking this closure problem. We refer the readers to standard
textbooks (e.g. Leslie 1973; Monin & Yaglom 1975; Orszag 1977; Lesieur 1990;
McComb 1990) for details. We make here a few remarks only on some theories
closely related to the current work.

A lot of closure theories have been proposed so far which are based upon the quasi-
normality of the one-point statistics of a turbulent velocity field. The zero-fourth-order
cumulant theory is one of the simplest approximations which unfortunately leads to
a negative energy spectrum (Monin & Yaglom 1975). The EDQNM (eddy-damped
quasi-normal Markovian) approximation (Orszag 1977) guarantees the positivity of
the energy spectrum in the inertial range. This theory, however, requires an adjustable
free parameter to get a reasonable value of the Kolmogorov constant. An analytical
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theory of turbulence which does not include any free parameters was developed by
Kraichnan (1959, 1965). He proposed the DIA (direct-interaction approximation) and
applied it to the Eulerian velocity field, which we call here the Eulerian DIA. How-
ever, it does not give the proper − 5

3
power law of the energy spectrum in the inertial

range but a − 3
2

power law. This failure may be attributed to the non-invariance
under Galilean transformation of the Eulerian velocity covariance (Kraichnan 1965;
Orszag 1977). Later, he introduced the Lagrangian velocity field and rewrote the
Eulerian DIA equations in terms of it and succeeded in obtaining the − 5

3
power

energy spectrum (Kraichnan 1965), which we call Kraichnan’s Lagrangian DIA. The
analysis is, however, too complicated for the present authors to understand.

The Eulerian DIA equations can also be derived by various kinds of renormal-
ized expansions with respect to the Reynolds number, which include a diagrammatic
technique (Wyld 1961; Martin, Siggia & Rose 1973), a primitive Reynolds number
expansion followed by a formal change of variables (Leslie 1973) and the reversed
expansion method (Kraichan 1977). It should be stressed, however, that the DIA
and the above renormalized expansions are based upon completely different ideas
of approximation though the resulting equations happen to be same (which is not
trivial a priori ). This coincidence suggests the wide applicability of the results of
these approximations. The reversed expansion method was applied to the Lagrangian
velocity field by Kaneda (1981) after introducing a mapping function (Lagrangian
position function) which relates the Lagrangian and the Eulerian fields and he derived
integro-differential equations which he called the LRA (Lagrangian renormalized ap-
proximation) equations. They are much simpler than Kraichnan’s Lagrangian DIA
equations and lead to the − 5

3
power inertial-range energy spectrum with Kolmogorov

constant 1.722. This theory also has no free parameters. The properties of this set of
equations have been extensively investigated by himself and his coworkers (Kaneda
1986, 1993; Gotoh, Kaneda & Bekki 1988).

The wrong predictions of the − 5
3

power spectrum by the Eulerian DIA equation
were also corrected by introducing a propagator function relating a two-time Eulerian
velocity correlation function with a single-time one (McComb, Shanmugasundaram
& Hutchinson 1989; McComb, Filipiak & Shanmugasundaram 1992). Qian (1983)
obtained the − 5

3
power law of the energy spectrum with the Kolmogorov constant

1.2 by a mean-field approach.
The purpose of this paper is twofold. First, we apply Kraichnan’s idea of DIA to

the Lagrangian field quantities, using the Lagrangian position function, to obtain a
set of integro-differential equations for the Lagrangian velocity correlation and the
response functions, which happens to be exactly same as the one derived by Kaneda
(1981). Then, we seek the shape of the energy spectrum function in two cases, i.e.
stationary and freely decaying. In the former the energy spectrum is obtained in the
universal range, while in the latter it is determined in the whole wavenumber range in
a similarly decaying form. We solve the governing equations by an iteration method
instead of the initial value approach used before by Gotoh et al. (1988).

This paper is organized as follows. In the next section we introduce several basic
quantities which are necessary in the subsequent analysis. In §3, we explain the idea,
the assumptions and the procedure for the present Lagrangian DIA and derive a set
of integro-differential equations for homogeneous isotropic turbulence. We then solve
these equations for a stationary case in §4. The skewness of the velocity derivative
and the wavenumber dependence of the eddy viscosity are also calculated. A freely
decaying case is treated in §5. The shape of the energy spectrum and the time
development are determined in a similarly evolving form. Section 6 is devoted to a
discussion. Details of some calculations are given in Appendices.
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2. Preparations
2.1. Basic quantities

We deal with the motion of an incompressible viscous fluid which is described by the
Navier–Stokes equation

∂

∂t
ui(x, t) + uj(x, t)

∂

∂xj
ui(x, t) = −1

ρ

∂

∂xi
p(x, t) + ν

∂2

∂xj∂xj
ui(x, t) (i = 1, 2, 3) (2.1)

and continuity equation

∂

∂xi
ui(x, t) = 0 , (2.2)

where ui(x, t) is the Eulerian velocity at position x at time t, ρ is the constant density,
p(x, t) is the pressure and ν is the kinematic viscosity of the fluid. Repeated subscripts
are summed over 1–3.

The Lagrangian position function

ψ(x, t|x′, t′) = δ3
(
x− y(t|x′, t′)

)
, (2.3)

which was introduced before by Kaneda (1981) plays an important role in the present
analysis, where y(t|x′, t′) stands for the Lagrangian coordinate (i.e. the position of a
fluid element at time t which passed position x′ at time t′ (< t)), and δ3 is Dirac’s
delta function. Obviously, the position function obeys

∂

∂t
ψ(x, t|x′, t′) = −uj(x, t)

∂

∂xj
ψ(x, t|x′, t′) (2.4)

with initial condition

ψ(x, t′|x′, t′) = δ3(x− x′) . (2.5)

The Lagrangian velocity vi(t|x′, t′) = ui(y(t|x′, t′), t) and the Eulerian velocity are
related to each other as

vi(t|x′, t′) =

∫
d3x ui(x, t) ψ(x, t|x′, t′) , (2.6)

ui(x, t) =

∫
d3x′ vi(t|x′, t′)ψ(x, t|x′, t′) . (2.7)

As mentioned in the introduction, we will construct a system of equations for the
Lagrangian velocity correlation function which is defined by

Vij(r, t, t
′) = vi(t|x+ r, t′) uj(x, t′) . (2.8)

Here and below, an overbar denotes an ensemble average. We have assumed that
the velocity field is statistically homogeneous, so that Vij is independent of position
vector x.

2.2. Fourier decomposition

For simplicity of description, we consider the motion of a fluid confined in a periodic
cube of side L. Then we can expand ui, vi, ψ and Vij in Fourier series as

ui(x, t) =

(
2π

L

)3 ∑
k

ũi(k, t) exp
[
ik · x

]
, (2.9)
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vi(t|x′, t′) =

(
2π

L

)3 ∑
k

ṽi(t|k, t′) exp
[
ik · x′

]
, (2.10)

ψ(x, t|x′, t′) =

(
2π

L

)6 ∑
k

∑
k′

ψ̃(k, t|k′, t′) exp
[
i (k · x+ k′ · x′)

]
(2.11)

and

Vij(r, t, t
′) =

(
2π

L

)3 ∑
k

Ṽ ij(k, t, t
′) exp

[
ik · r

]
, (2.12)

respectively, where

k =
2π

L
(n1, n2, n3) ( n1, n2, n3 = 0,±1,±2, · · · ) (2.13)

is the wavenumber vector. The summations are taken over triplets of integers n1, n2

and n3. The Fourier inverse transformations are similarly written as

ũi(k, t) =

(
1

2π

)3 ∫
d3x ui(x, t) exp

[
−ik · x

]
, (2.14)

ṽi(t|k, t′) =

(
1

2π

)3 ∫
d3x vi(t|x′, t′) exp

[
−ik · x′

]
, (2.15)

ψ̃(k, t|k′, t′) =

(
1

2π

)6 ∫
d3x

∫
d3x′ ψ(x, t|x′, t′) exp

[
−i(k · x+ k′ · x′)

]
(2.16)

and

Ṽ ij(k, t, t
′) =

(
1

2π

)3 ∫
d3r Vij(r, t, t

′) exp
[
−ik · r

]
=

(
2π

L

)3

ṽi(t|k, t′) ũj(−k, t′) , (2.17)

respectively. In these equations, integrations are carried out over the periodic cube.
Relations between the Eulerian velocity and Lagrangian velocity (2.6) and (2.7) are
written, in Fourier space, as

ṽi(t|k, t′) =
(2π)6

L3

∑
k′

ũi(k
′, t) ψ̃(−k′, t|k, t′) (2.18)

and

ũi(k, t) =
(2π)6

L3

∑
k′

ṽi(t|k′, t′) ψ̃(k, t| − k′, t′) , (2.19)

respectively.
The governing equations for ũi and ψ̃ are derived from (2.1), (2.2), (2.4) and (2.5)

as [
∂

∂t
+ ν k2

]
ũi(k, t) = − i

2

(
2π

L

)3

P̃ijm(k)
∑
p

∑
q

(k+p+q=0)

ũj(−p, t) ũm(−q, t) , (2.20)

ki ũi(k, t) = 0 , (2.21)
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and
∂

∂t
ψ̃(k, t|k′, t′) = −i kj

(
2π

L

)3 ∑
p

∑
q

(k+p+q=0)

ũj(−p, t) ψ̃(−q, t|k′, t′) (2.22)

with initial condition

ψ̃(k, t′|k′, t′) =
L3

(2π)6
δ3
k+k′ . (2.23)

Here,

P̃ijm(k) = km P̃ij(k) + kj P̃im(k), P̃ij(k) = δij −
kikj

k2
, (2.24)

where δ3
k and δij are Kronecker’s deltas (δ3

k = 0 (k 6= 0) , δ3
k = 1 (k = 0), δij = 0 (i 6=

j) , δij = 1 (i = j)). The time-derivative of (2.18) then yields

∂

∂t
ṽi(t|k′, t′) = − (2π)6

L3
ν
∑
p

p2 ũi(p, t) ψ̃(−p, t|k′, t′)

− i
(2π)9

L6

∑
p

∑
q

∑
r

(p+q+r=0)

rirmrn

r2
ũm(p, t) ũn(q, t) ψ̃(r, t|k′, t′) , (2.25)

where use has been made of (2.20) and (2.22). By using (2.17), (2.20) and (2.25), we
can derive the governing equations of the two-point Lagrangian velocity correlation
function for a single time as[

∂

∂t
+ 2νk2

]
Ṽ ij(k, t, t) = − i

2

(
2π

L

)6

P̃imn(k)
∑
p

∑
q

(k+p+q=0)

ũm(−p, t) ũn(−q, t) ũj(−k, t)

+ (i↔ j , k→ −k) (2.26)

and for two times as

∂

∂t
Ṽ ij(k, t, t

′) = − (2π)9

L6
ν
∑
p

p2 ũi(p, t) ψ̃(−p, t|k, t′) ũj(−k, t′)

− i
(2π)12

L9

∑
p

∑
q

∑
r

(p+q+r=0)

rirmrn

r2
ũm(p, t) ũn(q, t) ψ̃(r, t|k, t′) ũj(−k, t′) .

(2.27)

Notice that the above two equations contain three- and four-point correlation func-
tions. Similarly the governing equation of the three-point velocity correlation function
would contain four- and five-point correlation functions. Therefore the system of equa-
tions cannot be closed, unless multi-point (e.g. four-point) correlation functions are
expressed in terms of fewer-point (e.g. two-point) ones at some stage.

For later convenience, we define here the energy spectrum

E(k, t) = 1
2
k2

∮
dΩ Ṽ ii(k, t, t) , (2.28)

where
∮

dΩ denotes the solid angle integration in the Fourier space, and the incom-
pressible part of the Lagrangian velocity correlation

Q̃ij(k, t, t
′) = P̃im(k) Ṽ mj(k, t, t

′) . (2.29)
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2.3. Response function

The response functions of the velocity and the position functions play a key role
in the present formulation (Kraichnan 1959; Kaneda 1981). The Eulerian velocity
response function

G̃
(E)
ij (k, t|k′, t′) =

δũi(k, t)

δũj(k
′, t′)

(2.30)

expresses the influence on ũi(k, t) at time t due to an infinitesimal disturbance for
ũj(k

′, t′) (t′ 6 t), where δ denotes a functional derivative. By taking a functional
derivative of (2.20), we obtain the governing equation for this function as[

∂

∂t
+ νk2

]
G̃

(E)
ij (k, t|k′, t′) = −i

(
2π

L

)3

P̃imn(k)
∑
p

∑
q

(k+p+q=0)

ũm(−p, t) G̃(E)
nj (−q, t|k′, t′) .

(2.31)
The initial condition is given by

G̃
(E)
ij (k, t′|k′, t′) =

L3

(2π)6
δij δ

3
k+k′ . (2.32)

Similarly, the governing equations of the Lagrangian velocity response function

G̃
(L)
ij (t|k, k′, t′) =

δṽi(t|k, t′)
δũj(k

′, t′)
(2.33)

and the position response function

Ψ̃i(k, t|k′, k′′, t′) =
δψ̃(k, t|k′, t′)
δũi(k

′′, t′)
(2.34)

are obtained from (2.25) and (2.22), respectively, as

∂

∂t
G̃

(L)
ij (t|k, k′, t′)

= −ν (2π)6

L3

∑
k′′

k′′2
[
G̃

(E)
ij (k′′, t|k′, t′) ψ̃(−k′′, t|k, t′) + ũi(k

′′, t) Ψ̃j(−k′′, t|k, k′, t′)
]

−i
(2π)9

L6

∑
p

∑
q

∑
r

(p+q+r=0)

rirmrn

r2

×
[

2ũm(p, t) G̃(E)
nj (q, t|k′, t′) ψ̃(r, t|k, t′) + ũm(p, t) ũn(q, t) Ψ̃j(r, t|k, k′, t′)

]
(2.35)

with initial condition

G̃
(L)
ij (t′|k, k′, t′) =

L3

(2π)6
δij δ

3
k+k′ , (2.36)

and

∂

∂t
Ψ̃i(k, t|k′, k′′, t′) = −i ka

(
2π

L

)3

×
∑
p

∑
q

(k+p+q=0)

[
ũa(−p, t) Ψ̃i(−q, t|k′, k′′, t′) + G̃

(E)
ai (−p, t|k′′, t′) ψ̃(−q, t|k′, t′)

]
(2.37)
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with initial condition

Ψ̃i(k, t
′|k′, k′′, t′) = 0 . (2.38)

A functional derivative of (2.19) gives a relation among the Eulerian velocity
response, the Lagrangian velocity response and the position response functions as

G̃
(E)
ij (k, t|k′, t′) =

(2π)6

L3

∑
k′′

G̃
(L)
ij (t|k′′, k′, t′) ψ̃(k, t| − k′′, t′)

+
(2π)12

L6

∑
k′′

∑
k′′′

ũi(k
′′′, t) ψ̃(−k′′′, t|k′′, t′) Ψ̃j(k, t| − k′′, k′, t′) . (2.39)

For later use, we define here the incompressible part of the Lagrangian velocity
response function by

G̃ij(k, t, t
′) =

(2π)6

L3
G̃

(L)
im (t|k,−k, t′) P̃mj(k) . (2.40)

2.4. Homogeneous isotropic turbulence

If turbulence is isotropic as well as homogeneous, second-order tensors Q̃ij and G̃ij
are represented by a single scalar as

Q̃ij(k, t, t
′) = 1

2
P̃ij(k) Q(k, t, t′) , (2.41)

and

G̃ij(k, t, t
′) = P̃ij(k) G(k, t, t′) . (2.42)

Then, the energy spectrum is represented, from (2.28), (2.29) and (2.41), as

E(k, t) = 2πk2 Q(k, t, t) . (2.43)

The energy spectrum at large wavenumbers for (locally) homogeneous isotropic and
stationary turbulence at large Reynolds numbers was considered by Kolmogorov
(1941). By employing a dimensional analysis in terms of wavenumber k, kinematic
viscosity ν and the mean of energy dissipation rate ε, he derived a similarity form of
the energy spectrum function at large wavenumbers as

E(k, t) = ν5/4 ε1/4 F(k/kd) , (2.44)

kd = ε1/4ν−3/4 , (2.45)

where F is a non-dimensional function and kd is the Kolmogorov wavenumber. The
wavenumber range in which similarity law (2.44) is observed is called the universal
range. This similarity law has been supported by many measurements of different
kinds of turbulence (see Chapman 1979; Saddoughi & Veeravelli 1994 and also figure
2). In the inertial subrange (k � kd), the spectrum may not depend on ν and takes
power form

E(k, t) = K ε2/3 k−5/3 , (2.46)

where K is the Kolmogorov constant, which is evaluated experimentally to be 1.62±
0.17 (Sreenivasan 1995). One of the main objectives of the current closure theory of
turbulence is to determine the universal function F with resort to the Navier–Stokes
equation.
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3. Lagrangian direct-interaction approximation

3.1. Direct-interaction decomposition

Following an idea developed by Kraichnan (1959), we introduce a direct-interaction
decomposition. Recall that the right-hand side of Navier–Stokes equation (2.20) is
composed of a sum of an infinite number of quadratic nonlinear terms, each of which
represents direct interactions among three Fourier components with wavenumbers k,
p and q which construct a triangle (k + p + q = 0).

Here, we choose arbitrarily a triangular triplet of wavenumbers, say k0, p0 and q0

(k0 +p0 +q0 = 0). We imagine then a fictitious field which does not contain the direct
interactions among these special wavenumbers. This fictitious field is called the NDI-
field (non-direct-interaction field), and is denoted by ũ(0)

i (k, t‖k0, p0, q0). Furthermore,

we define the DI-field (direct-interaction field) ũ(1)
i (k, t‖k0, p0, q0) by the difference

between the true field and the NDI-field, namely

ũi(k, t) = ũ
(0)
i (k, t‖k0, p0, q0) + ũ

(1)
i (k, t‖k0, p0, q0). (3.1)

Hence, the governing equation for ũ(0)
i is written as[

∂

∂t
+ νk2

]
ũ

(0)
i (k, t‖k0, p0, q0)

= − i

2

(
2π

L

)3

P̃ijm(k)
∑
p

∑
q

(k+p+q=0)

′
ũ

(0)
j (−p, t‖k0, p0, q0)ũ

(0)
m (−q, t‖k0, p0, q0) , (3.2)

where ΣΣ ′ stands for summation without the interactions among chosen three
wavenumbers k0, p0 and q0. Subtracting the above equation from the Navier–Stokes
equation, we obtain the time-evolution equation of the DI-field as[

∂

∂t
+ νk2

]
ũ

(1)
i (k, t‖k0, p0, q0)

= −i

(
2π

L

)3

P̃ijm(k)
∑
p

∑
q

(k+p+q=0)

′
ũj(−p, t)ũ(1)

m (−q, t‖k0, p0, q0)

−δ3
k−k0

i

(
2π

L

)3

P̃ijm(k0) ũ
(0)
j (−p0, t|k0, p0, q0) ũ

(0)
m (−q0, t|k0, p0, q0)

+δ3
k+k0

i

(
2π

L

)3

P̃ijm(k0) ũ
(0)
j (p0, t|k0, p0, q0) ũ

(0)
m (q0, t|k0, p0, q0)

+ (p0 → q0 → k0 → p0) . (3.3)

Here we have neglected the higher-order terms of ũ(1) (Assumption 1 written in the
next section). The direct-interaction decompositions for the Eulerian velocity response
function (2.31), position function (2.22) and position response function (2.37) are made
similarly. The details of the calculation are described in Appendix A.

By comparing (3.3) with (A 4) in Appendix A, we find that G̃(E0)
ij serves as Green’s

function of ũ(1)
i . A solution to (3.3), therefore, is expressed in terms of G̃(E0)

ij and ũ(0)
i as
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ũ
(1)
i (k, t‖k0, p0, q0) = i

(2π)9

L6
P̃abc(k)

∫ t

t0

dt′ G̃(E0)
ia (k, t| − k, t′‖k0, p0, q0)

×
[
− δ3

k−k0
ũ

(0)
b (−p0, t

′|k0, p0, q0) ũ
(0)
c (−q0, t

′|k0, p0, q0)

− δ3
k+k0

ũ
(0)
b (p0, t

′|k0, p0, q0) ũ
(0)
c (q0, t

′|k0, p0, q0)

+ (p0 → q0 → k0 → p0)
]
, (3.4)

where ũ(1)
i has been assumed to vanish at time t0. The DI-fields of other quantities

are similarly represented in terms of the NDI-fields (see Appendix B).

3.2. Methods of approximation

For the purpose of easy reference, we summarize here assumptions and procedures to
construct a system of equations for statistical quantities (i.e. the Lagrangian velocity
correlation and the response functions). We choose a coordinate system with zero
mean velocity and make the following three assumptions (Kraichnan 1959):

Assumption 1 X̃(1) is much smaller than X̃(0) in magnitude, hence we can neglect

their higher-order terms. Here, X̃ stands for any physical quantity (for example
ũi).

Assumption 2 ũ
(0)
i (k0, t||k0, p0, q0), ũ

(0)
j (p0, t

′||k0, p0, q0) and ũ
(0)
k (q0, t

′′||k0, p0, q0) are
statistically independent of each other.

Assumption 3 {ũ}, {G̃}, {ψ̃} and {Ψ̃} are statistically independent of each other.

We construct a set of integro-differential equations for the velocity correlation and
the response functions by employing the following four procedures :

Procedure 1 Substitute the direct-interaction decompositions, (3.1) and (A 1)–(A 3),
into the right-hand side of the governing equations of statistical quantities.
Thanks to Assumption 1, we can neglect higher-order terms of the DI-field.

Procedure 2 Eliminate physical quantities of the DI-field by making use of (3.4),
(B 1), (B 2) and (B 3).

Procedure 3 Eliminate G̃(E0)
ij , ψ̃(0) and Ψ̃ (0)

i respectively by making use of

G̃
(E0)
ij (k, t|k′, t′‖k0, p0, q0) = G̃

(L0)
ij (t|k, k′, t′‖k0, p0, q0) , (3.5)

ψ̃(0)(k, t|k′, t′‖k0, p0, q0) =
L3

(2π)6
δ3
k+k′ (3.6)

and

Ψ̃
(0)
i (k, t|k′, k′′, t′‖k0, p0, q0) = − i ka

(2π)3

∫ t

t′
dt′′ G̃(L0)

ai (t′′|k + k′, k′′, t′‖k0, p0, q0) . (3.7)

Procedure 4 Replace ũ(0)
i ũ

(0)
j and G̃(L0)

im by Q̃ij and G̃ij through

ũ
(0)
i (k, t‖k0, p0, q0) ũ

(0)
j (−k, t′‖k0, p0, q0) =

(
L

2π

)3

Q̃ij(k, t, t
′) (3.8)

and
(2π)6

L3
G̃

(L0)
im (t|k,−k, t′‖k0, p0, q0) P̃mj(k) = G̃ij(k, t, t

′) , (3.9)

which follows from (2.40) under Assumption 1. For derivations of relations
(3.5)–(3.8), see Appendix C.
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3.3. Closed system of equations for statistical quantities

Applying the methods of the Lagrangian DIA described in the preceding section,
we can construct a system of equations for statistical quantities. We start with the
two-point one-time velocity correlation function. By substituting direct-interaction
decomposition (3.1) into the right-hand side of (2.26), we obtain[
∂

∂t
+ 2νk2

]
Ṽ ij(k, t, t) = − i

2

(
2π

L

)6

P̃imn(k)

×
∑
p

∑
q

(k+p+q=0)

[
ũ

(0)
m (−p, t‖k, p, q) ũ(0)

n (−q, t‖k, p, q) ũ(0)
j (−k, t‖k, p, q)

+ 2 ũ(0)
m (−p, t‖k, p, q) ũ(1)

n (−q, t‖k, p, q) ũ(0)
j (−k, t‖k, p, q)

+ ũ
(0)
m (−p, t‖k, p, q) ũ(0)

n (−q, t‖k, p, q) ũ(1)
j (−k, t‖k, p, q)

]
+ (i↔ j , k→ −k). (3.10)

Here a set of removed wavenumbers has been selected as
(
k0, p0, q0

)
=
(
k, p, q

)
in

the summand of the right-hand side of the above equation, and higher-order terms of
the DI-field have been neglected (Assumption 1). Applying Procedures 2–4 to (3.10),
we obtain the time-evolution equation of the two-point velocity correlation function
as[

∂

∂t
+ 2νk2

]
Q̃ij(k, t, t)

=
1

2

(
2π

L

)3

P̃ia(k)×
{
P̃amn(k)

∑
p

∑
q

(k+p+q=0)

∫ t

t0

dt′ Q̃mb(−p, t, t′)

×
[

2
(
qb G̃nc(−q, t, t′) + qc G̃nb(−q, t, t′)

)
Q̃jc(−k, t, t′)

+
(
kb G̃jc(−k, t, t′) + kc G̃jb(−k, t, t′)

)
Q̃nc(−q, t, t′)

]
+ (a↔ j, k→ −k)

}
, (3.11)

(see Appendix D for the derivation).

In a similar way, we can express the governing equation of the two-point two-time
Lagrangian velocity correlation function in terms of only the two-point Lagrangian
velocity correlation and the response functions. Employing Procedures 1–4 for (2.27)
(see Appendix E), we obtain[
∂

∂t
+ νk2

]
Q̃ij(k, t, t

′)

= −2

(
2π

L

)3

P̃id(k)
∑
p

∑
q

(k+p+q=0)

qaqbqcqd

q2

∫ t

t′
dt′′ Q̃ab(p, t, t

′′) Q̃cj(k, t, t
′) . (3.12)
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Finally, for the Lagrangian velocity response function, it follows from (2.35) (see
Appendix E) that[

∂

∂t
+ νk2

]
G̃ij(k, t, t

′) = −2

(
2π

L

)3 ∑
p

∑
q

(k+p+q=0)

kikmkn

k2

×
∫ t

t′
dt′′
[
qbG̃nc(−q, t, t′) + qcG̃nb(−q, t, t′)

]
G̃cj(k, t

′′, t′) Q̃mb(−p, t, t′′)

−2

(
2π

L

)3 ∑
p

∑
q

(k+p+q=0)

qaqbqcqi

q2

∫ t

t′
dt′′ Q̃ab(p, t, t

′′) G̃cj(k, t, t
′) . (3.13)

Equations (3.11)–(3.13) constitute a closed system of equations for the time-
evolution of the Lagrangian velocity correlation and the response functions. It should
be remarked that this system of equations agrees exactly with that obtained before
by the use of LRA (Kaneda 1981). It is interesting to observe that completely dif-
ferent methods lead to an identical result, which suggests a wide applicability of the
equations.

Equations (3.11)–(3.13) were derived for homogeneous turbulence. If turbulence is
isotropic as well as homogeneous, they reduce to[

∂

∂t
+ 2νk2

]
Q(k, t, t) = 2π

∫∫
∆k

dpdq kpq b̂(k, p, q)

×
∫ t

t0

dt′ Q(q, t, t′)
[
G(k, t, t′) Q(p, t, t′)− G(p, t, t′) Q(k, t, t′)

]
, (3.14)

[
∂

∂t
+ νk2 + η̂(k, t, t′)

]
Q(k, t, t′) = 0 , (3.15)[

∂

∂t
+ νk2 + η̂(k, t, t′)

]
G(k, t, t′) = 0 (3.16)

and

G(k, t, t) = 1 (3.17)

respectively (for the derivation, see Kaneda 1981), where
∫∫

∆k
dpdq denotes an in-

tegration under the condition that k, p and q constitute a triangle. We have taken
the limit that the size L of a periodic box is infinity. The content in the rest of this
section and §4.1 is essentially the same as that in Kaneda (1981, 1986). However, we
recapitulate it because it is necessary for further analysis in the subsequent sections.
Equations (4.5) and (4.6) are basic in §4.2, and (3.16), (3.22) and (4.13) are essential

for the analysis in §5. Functions b̂(k, p, q) and η̂(k, t, t′) in (3.14)–(3.16) are respectively
defined by

b̂(k, p, q) =
1

8k4p2q2

[
k2 − (p− q)2

][
(p+ q)2 − k2

][
(2p2 − q2) k2 − (p2 − q2) q2

]
(3.18)
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and

η̂(k, t, t′) = 4
3
π k5

∫ ∞
0

dp p10/3 J(p2/3)

∫ t

t′
dt′′ Q(kp, t, t′′) (3.19)

with

J(p) =
3

32p5

[
(1− p3)4

2p3/2
log

(1 + p3/2)

|1− p3/2| −
1 + p3

3
(3p6 − 14p3 + 3)

]
. (3.20)

It follows from (3.15)–(3.17) that

Q(k, t, t′) = Q(k, t′, t′) G(k, t, t′) . (3.21)

Once the single-time velocity correlation function Q(k, t, t) and the response function
G(k, t, t′) are determined, the two-time velocity correlation function Q(k, t, t′) follows
from (3.21). In homogeneous isotropic turbulence, therefore, it is sufficient to deal
with the system of equations for Q(k, t, t) and G(k, t, t′). Note that using (3.14) and
(3.21) we can write the equation for Q(k, t, t) as[

∂

∂t
+ 2νk2

]
Q(k, t, t) = 2π

∫∫
∆k

dpdq kpq b̂(k, p, q)

×
∫ t

t0

dt′ G(k, t, t′) G(p, t, t′) G(q, t, t′) Q(q, t′, t′)

[
Q(p, t′, t′)− Q(k, t′, t′)

]
. (3.22)

4. Stationary turbulence
In this section, we consider how the resultant equations (3.16) and (3.22) in the

previous section behave in homogeneous isotropic stationary turbulence. Under the
assumption of stationarity, it is shown that Q and G depend only on the difference
between t and t′, so that we put

Q(k, t, t′) = Q̌(k, t− t′), (4.1)

G(k, t, t′) = Ǧ(k, t− t′) . (4.2)

Then, the single-time velocity correlation function is written as

Q(k, t, t) = Q̌(k, 0) , (4.3)

and (3.21) as

Q̌(k, t) = Q̌(k, 0) Ǧ(k, t) . (4.4)

Introduction of the above relations into (3.16) yields

∂

∂t
log Q̌(k, t) = −νk2 − 4

3
π k5

∫ ∞
0

dp p10/3 J(p2/3)

∫ t

0

dt′ Q̌(kp, t′) . (4.5)

On the other hand, integration from k0 to infinity with respect to k of (3.22) multiplied
by 2πk2 leads to

4πν

∫ k0

0

dk k4 Q̌(k, 0) = ε− 4π2

∫ ∞
k0

dk

∫∫
∆k

dpdq k3pq b̂(k, p, q)

×
∫ ∞

0

dt′ Q̌(k, t′) Q̌(p, t′) Q̌(q, t′)

[
Q̌(k, 0)−1 − Q̌(p, 0)−1

]
, (4.6)
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where use has been made of

4πν

∫ ∞
0

dk k4 Q̌(k, 0) = ε , (4.7)

and the initial time has been put at t0 = −∞. Equations (4.5) and (4.6) constitute the
basic equations in stationary turbulence.

4.1. Kolmogorov constant

To examine the behaviour of these equations in the inertial subrange, we take the
limit of ν → 0. Then, (4.5) and (4.6) are reduced respectively to

∂

∂t
log Q̌(k, t) = − 4

3
π k5

∫ ∞
0

dp p10/3 J(p2/3)

∫ t

0

dt′ Q̌(kp, t′) (4.8)

and

ε = 4π2

∫ ∞
k0

dk

∫∫
∆k

dpdq k3pq b̂(k, p, q)

×
∫ ∞

0

dt′ Q̌(k, t′) Q̌(p, t′) Q̌(q, t′)

[
Q̌(k, 0)−1 − Q̌(p, 0)−1

]
. (4.9)

These equations permit such similar solutions as

Q̌(k, t) =
K

2π
ε2/3 k−11/3 Q̌†(K1/2ε1/3k2/3t) , (4.10)

with

Q̌†(0) = 1 . (4.11)

In terms of Q̌†, we can rewrite (4.8) and (4.9) as

d

dt
log Q̌†(t) = −

∫ ∞
0

dp J(p)

∫ t

0

dt′Q̌†(pt′) (4.12)

and

K−3/2 =

∫ ∞
1

dk

∫ 1

0

dp

∫ k+p

max{k−p,p}
dq k3pq

∫ ∞
0

dt Q̌†(k2/3t) Q̌†(p2/3t) Q̌†(q2/3t)

×
{[

b̂(k, p, q) + b̂(k, q, p)

]
(pq)−11/3 −

[
b̂(t, p, q) q−11/3 + b̂(t, q, p) p−11/3

]
k−11/3

}
.

(4.13)

The energy spectrum is represented, from (2.43) and (4.3), by

E(k) = 2πk2 Q̌(k, 0) = K ε2/3 k−5/3 . (4.14)

Hence, K is actually the Kolmogorov constant (cf. (2.46)). (In this section for brevity
we omit the time argument in E(k, t), which is independent of time.) We solved
(4.12) numerically with boundary condition (4.11). The result is shown in figure 1,
which is same as figure 1 in Kaneda (1986). Here, G(k, t, t′) = Q̌†(K1/2ε1/3k2/3(t− t′)).
From (4.13) and the above numerical result for Q̌†, we can evaluate the Kolmogorov
constant to be 1.722 (Kaneda 1986).
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Figure 1. Lagrangian velocity response function for stationary turbulence.

4.2. Energy spectrum

Here, we solve (4.5) and (4.6) in the entire universal range. We express Q̌ in
terms of non-dimensional functions Q̌‡ of non-dimensional wavenumber κ and non-
dimensional time τ as

Q̌(k, t) =
1

2π
Kε2/3k−11/3 Q̌‡(κ, τ) (4.15)

with

Q̌‡(0, 0) = 1, (4.16)

κ = K−3/8ε−1/4ν3/4k, τ = K1/2ε1/3k2/3t . (4.17)

Then, (4.5) is converted into

∂2

∂τ2
log Q̌‡(κ, τ) = −

∫ ∞
0

dp J(p) Q̌‡(κp3/2, τp) (4.18)

with

∂

∂τ
log Q̌‡(κ, τ)

∣∣∣∣
τ=0

= −κ4/3 , (4.19)

while (4.6) is written as

Q̌‡(κ, 0) =
1

2

∫∫
∆κ

dpdq (pq)−8/3κ−1 b̂(κ, p, q)

×
∫ ∞

0

dt′ Q̌‡(κ, κ2/3t′) Q̌‡(p, p2/3t′) Q̌‡(q, q2/3t′)

[
κ11/3 Q̌‡(κ, 0)−1 − p11/3 Q̌‡(p, 0)−1

]
. (4.20)

Note that the energy spectrum is expressed as

E(k) = Kε2/3k−5/3 Q̌‡(κ, 0) . (4.21)

Hence, by searching numerically (using an iteration method for (4.18) and (4.19),
and the Newton–Raphson method for (4.20)) the solution of Q̌‡ which satisfies
(4.18)–(4.20) and (4.16), we can determine the functional form of the energy spectrum
through (4.21). The results are shown in figure 2 for (a) the three-dimensional energy
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spectrum, (b) the one-dimensional longitudinal energy spectrum

E‖(k) =
1

2

∫ ∞
k

dk′
(

1− k2

k′2

)
E(k′)

k′
(4.22)

and (c) the compensated one-dimensional longitudinal energy spectrum E‖(k)/(ε
2/3k−5/3),

which are almost identical to those obtained by a numerical integration of equations
(3.16) and (3.22) for decaying turbulence (Gotoh et al. 1988). Agreement with mea-
surements of a tidal channel (Grant, Stewart & Moilliet 1962), which plotted by solid
and white circles, and other experimental data is excellent.

4.3. Skewness factor of the velocity derivative

Although only the second-order moments are dealt with in the present closure theory,
the skewness factor of the longitudinal derivative of the velocity, which is a third-
order moment, can be calculated with the help of the Kármán-Howarth equation for
homogeneous isotropic turbulence as

S =

(
∂u1

∂x1

)3
/(

∂u1

∂x1

)2
3/2

= −3
√

30ν

7

∫ ∞
0

dk k4 E(k)

/(∫ ∞
0

dk k2 E(k)

)3/2

.

(4.23)
Using the result of the numerical computation for Q̌‡, we can perform the integrations
on the right-hand side of (4.23) to find

S = −0.66 , (4.24)

which is in perfect agreement with the value obtained by a numerical integration of
the Markovianized LRA equations for the decaying turbulence (Kaneda 1993). This
agreement may be attributed to the fact that the structure of the energy spectrum
in the universal range is the same for the stationary and the decaying cases (see
Appendix F). Note that this factor is independent of Reynolds number. Many
turbulence measurements, on the contrary, show that it may increase in magnitude
with Reynolds number which expresses the intermittency of turbulence, though it is
not conclusive because fluctuations in the data are quite large. It varies from −0.6
to −1 in the range 103 < Rλ < 2× 104 (see Van Atta & Antonia 1980). The present
result (4.24) is consistent with observation within this range of the Reynolds number.

4.4. Eddy viscosity

One of the main difficulties in analysing the structure of developed turbulence at
high Reynolds numbers may be attributed to the enormously wide range of relevant
active motions. The ratio between the largest and smallest motions, i.e. the energy-
containing and the energy-dissipation scales increases in proportion to the power
of 3/4 of the Reynolds number. It is hard to resolve the smallest excited scales of
developed turbulence of practical interest even on a present-day supercomputer. The
so-called large-eddy simulation (see Lesieur & Métais 1996 for a review) may be
one of the most promising methods of analysing the turbulence dynamics in which
only large-scale components of motion are explicitly simulated, while the effects
on the resolved-scale components of the subgrid-scale motions are implicitly taken
into account as eddy viscosity. It is the purpose of the present section to examine
the property of the eddy viscosity in the framework of closure theories (Kraichnan
1976).
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Figure 2 (a, c). For caption see facing page.
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Figure 2. Energy spectra in the universal range for stationary turbulence: (a) three-dimensional
energy spectrum; (b) one-dimensional longitudinal energy spectrum; (c) one-dimensional compen-
sated longitudinal energy spectrum. Symbols in (b) and (c) denote experimental data for various
kinds of turbulence (taken from Chapman 1979, Grant et al. 1962 and Saddoughi & Veeravalli
1994). Rλ is the microscale Reynolds number.

For the discussion of the eddy viscosity it is convenient to rewrite the energy
equation (3.22) as

∂

∂t
E(k, t) = −2νk2E(k, t) + T (k, t) , (4.25)

where

T (k, t) =

∫∫
4k

dpdq T (3)(k, p, q, t) , (4.26)

and

T (3)(k, p, q, t) = 2π2 k3pq

∫ t

−∞
dt′ G(k, t, t′) G(p, t, t′) G(q, t, t′)

×
[ (

b̂(k, p, q) + b̂(k, q, p)

)
Q(p, t′, t′) Q(p, t′, t′)

−
(
b̂(k, p, q) Q(q, t′, t′) + b̂(k, q, p) Q(p, t′, t′)

)
Q(k, t′, t′)

]
(4.27)
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Figure 3. Triad energy transfer function T (3)(k, p, q)/(εk3) in the inertial range for stationary
turbulence. Contour levels are 0,±10−1.5,±10−1,±10−0.5 · · · ,±102. Positive regions are shaded.

is the triad energy transfer function. Here, the initial time has been set at t0 = −∞.
The first term on the right-hand side of (4.25) represents the dissipation of energy
by molecular viscosity, and the second the energy transfer to the modal energy of
wavenumber k from all the other modal energies through nonlinear interactions. Eddy
viscosity is defined as the molecular viscosity counterpart when the contribution from
the subgrid-scale components is expressed like the first term of (4.25) (see (4.29)
below). In figure 3, the triad energy transfer function is shown in the case that all
of three wavenumbers, k, p, q are in the inertial range. Positive regions are shaded.
Sharp peaks at the corners of the rectangular domain represent strong non-local triad
interactions (see Ohkitani & Kida 1992).

Let us denote by kc the cut-off wavenumber which is the reciprocal of the dividing
length of the resolved and the subgrid scales (e.g. the mesh size in a numerical
simulation of turbulence). We divide the energy transfer function T (k, t), which is
composed of many triad interactions, into two parts as

T (k, t) = T<(k, t|kc) + T>(k, t|kc), (4.28)

where T< denotes the contribution from the resolved scales, i.e. an integral of (4.26)
over p and q 6 kc, and T> that from the subgrid scales, i.e. an integral for p or q > kc.
If we write the second term of (4.28) formally as

T>(k, t|kc) = −2k2 νT (k, t|kc)E(k, t) , (4.29)

then νT (k, t|kc) is regarded as the eddy viscosity since it is a molecular viscosity
counterpart (cf. the first term of (4.25)). Notice that the eddy viscosity varies depending
upon the relevant wavenumber, contrary to the molecular viscosity. In the following we
will estimate the wavenumber dependence of the eddy viscosity for both wavenumbers
k and kc lying in the inertial range of stationary turbulence.

On substitution of (4.10) and (4.14) in (4.29), we obtain

νT (k, t|kc) = K1/2 ε1/3 k−4/3
c I(k/kc) (4.30)
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Figure 4. Wavenumber dependence of eddyviscosity. It is nearly constant νT ≈ 0.224ε
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small wavenumbers (k � kc). The variation is less than 50% up to k ≈ 0.6kc. At cut-off wavenumber
kc, it is 5.7 times as large as that at small wavenumbers.

with

I(k/kc) = − 1
3

(k/kc)
−4/3

∫ ∞
0

dt

∫ ∞
(k/kc)−1 t

dp

∫ p

p−t
dq t3pq Q̌†(t2/3) Q̌†(p2/3) Q̌†(q2/3)

×
[

(pq)−11/3
(
b̂(t, p, q) + b̂(t, q, p)

)
− (tp)−11/3 b̂(t, q, p)− (tq)−11/3 b̂(t, p, q)

]
.

(4.31)

Integration of (4.31) is carried out using the numerical solution of Q̌† already obtained
in §4.1. At two extreme values of k/kc we find I(0) = 0.170 and I(1) = 0.970.
The eddy viscosity thus determined is shown in figure 4. At wavenumbers much
smaller than the cut-off wavenumber (k � kc) the eddy viscosity is nearly constant,

νT ≈ 0.224ε1/3k
−4/3
c (Kaneda 1986) . The variation is less than 50% up to k ≈ 0.6kc.

However, as the wavenumber concerned approaches the cut-off wavenumber, the
eddy viscosity increases more and more rapidly. At the cut-off wavenumber it is 5.7
times as large as that at small wavenumbers. This sharp increase of the eddy viscosity
near the cut-off wavenumber, which is caused by strong non-local triad interactions
such as p � k ≈ q or q � k ≈ p (see figure 3), is also observed in other closure
theories (Kraichnan 1976), large-eddy simulations (Lesieur & Rogallo 1989), and
direct numerical simulations (Domaradzki, Liu & Brachet 1993).

5. Decaying turbulence
In this section, we consider homogeneous isotropic freely decaying turbulence with

the set of equations (3.16) and (3.22). The initial value problem of these equations was
investigated numerically by Gotoh et. al (1988). Here, instead, we seek solutions to
these equations in a similarity form. It can be shown that there are in general no similar
solutions with a single similarity law that hold over the entire wavenumber range.
Therefore, as was done by one of the present authors for the modified zero-fourth-
order cumulant approximation (Kida 1981), we seek similar solutions which obey
different similarity laws in two wavenumber ranges, namely they are characterized by
total energy E(t) and energy dissipation rate ε(t) in the energy-containing range, and
by ε(t) and ν in the universal range.
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5.1. Similarity form in the energy-containing range

It is easy to show that the similarity form of equations (3.16) and (3.22) in the universal
range is the same whether for decaying or stationary turbulence (see Appendix F).
That in the energy-containing range, on the other hand, is derived as follows. We
start by introducing index ζ which characterizes large-scale structure by

E(k, t) ∝ kζ as k → 0 . (5.1)

If we require that the velocity correlation tensor Ṽ ij does not diverge at the origin,
then ζ is limited from below to 2. On the other hand, even if ζ is greater than 4 at
the initial instant, ζ changes immediately to 4 (see (5.9) below). We restrict, therefore,
ourselves to the range

2 6 ζ 6 4 . (5.2)

It is convenient for the following analysis to introduce a new variable Êζ(k, t) by

E(k, t) = Êζ(k, t) k
ζ , (5.3)

where

0 < Êζ(0, t) < ∞ . (5.4)

Then, (2.43) and (3.22) lead to[
∂

∂t
+ 2νk2

]
Êζ(k, t) =

∫∫
4k

dpdq k3−ζpqζ−1 b̂(k, p, q)

×
∫ t

0

dt′ G(k, t, t′) G(p, t, t′) G(q, t, t′) Êζ(q, t
′)

[
pζ−2 Êζ(p, t

′)− kζ−2 Êζ(k, t
′)

]
, (5.5)

where we have put t0 = 0. Equation (3.16) for the response function is rewritten as[
∂

∂t
+ 2νk2 + 2

3
kζ+3

∫ ∞
0

dp p4/3+ζ J(p2/3)

∫ t

t′
dt′′ Êζ(kp, t

′′)G(kp, t, t′′)

]
G(k, t, t′) = 0.

(5.6)

If we demand that the turbulence in the energy-containing range is characterized

only by k, E(t) and ε(t), functions Êζ and G may be written, from the dimensional
analysis, as

Êζ(k, t) = E(t)(3ζ+5)/2 ε(t)−ζ−1 E
†
ζ

(
AE(t)3/2 ε(t)−1 k

)
, (5.7)

G(k, t, t′) = G†
(
AE(t)3/2 ε(t)−1 k , AE(t′)3/2 ε(t′)−1 k

)
, (5.8)

where A is a non-dimensional constant, which will be determined later so that the
final expression may be simple (see (5.19) below). By substituting these similarity
forms into (5.5) and (5.6), we find that the viscous term is smaller than the time-
derivative and the nonlinear terms by a factor Re−1, where Re is the Reynolds number
(Re = E2/εν). Hence, in the limit of large Reynolds numbers, the viscous terms can
be neglected.
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By neglecting the viscous term and taking the limit of k → 0 in (5.5), we obtain

d

dt
Êζ(0, t) =


0 (2 6 ζ < 4) , (5.9a)

14

15

∫ ∞
0

dp

∫ t

0

dt′
[
p3 G(p, t, t′) Ê4(p, t

′)
]2

(ζ = 4) . (5.9b)

This equation tells us that the Birkhoff constant, which is Ê2(0, t), is invariant in

time, but the Loitsiansky integral, which is equal to Ê4(0, t), is not, as pointed out
before in other closure theories of turbulence (Lesieur & Schertzer 1978; Kida 1981).
Substitution of similarity form (5.7) into (5.9a) leads to E(t) and ε(t) having power
functions of t as

E(t) = E0 t
−σ , (5.10)

where

σ =
2(ζ + 1)

ζ + 3
(2 6 ζ < 4) . (5.11)

Here, we have used relation

ε(t) = −dE
dt

. (5.12)

For ζ = 4, on the other hand, it may not be possible to prove that E(t) is a power
function of t. However, if we assume (5.10), then σ may be evaluated by

(2− σ)(10− 7σ)

2 σ2
E
†
4 (0)

=
28

15
A−7

∫ ∞
0

dp

∫ 1

0

dtt(20−13σ)/(2−σ)
[
p3 G†(p, pt)E†4 (pt)

]2

(ζ = 4). (5.13)

Inversely, it is easy to show that (5.10), (5.11) and (5.13) are sufficient conditions for
the existence of similar solutions (5.7) and (5.8).

By making use of (5.10) and (5.12), we can rewrite (5.7) and (5.8) as

Êζ(k, t) = E(ζ+3)/2
0 σ−ζ−1 t(−σζ−3σ+2ζ+2)/2 E

†
ζ

(
AE1/2

0 σ−1 t−σ/2+1k
)
, (5.14)

G(k, t, t′) = G†
(
AE1/2

0 σ−1 t−
σ
2 +1k , AE1/2

0 σ−1 t′−
σ
2 +1k

)
. (5.15)

In order to make the final equations simpler, we further replace E†, G† and σ with

E
†
ζ (x) =Aζ+3

(
b

2− 3b

)2

x−ζ−5/3 E‡(x2/3) , (5.16)

G†(x, x′) = G‡(x2/3, x′2/3) (5.17)

and

σ = 2− 3b , (5.18)

respectively. If we choose

A =
2− 3b

E1/2
0 b3/2

, (5.19)

then (5.14) and (5.15) are rewritten as

Êζ(k, t) = t2(b−1) k−ζ−5/3 E‡(b−1tbk2/3) , (5.20)

G(k, t, t′) = G‡(b−1tbk2/3, b−1t′bk2/3) , (5.21)
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and (5.5) and (5.6) as

∂

∂t

(
t2−2/b E‡(t)

)
= t

1
b
−1

∫∫
∆1

dpdq pq b̂(1, p, q)

∫ t

0

dt′ t′3−3/b

× G‡(t, t′) G‡(p2/3t, p2/3t′) G‡(q2/3t, q2/3t′) q−11/3 E‡(q−11/3t′)

×
[
q−11/3 E‡(p−11/3t′)− E‡(t′)

]
(5.22)

and

∂

∂t
logG‡(t, t′) = −t1/b−1

∫ ∞
0

dpJ(p)

∫ t

t′
dt′′ t′′1−1/b E‡(pt′′) G‡(pt, pt′′) , (5.23)

respectively. Conditions (5.11) and (5.13) for σ are also rewritten as

b =


4

3(ζ + 3)
(2 6 ζ < 4), (5.24a)[

21

4
− 7

10E‡0

∫ ∞
0

dk k−15/2

∫ 1

0

dt t3−3/b

(
G†(k, kt)Q†(kt)

)2
]−1

(ζ = 4). (5.24b)

Here, E‡0 is defined by

E‡(x) = E
‡
0 x

ζ+5/3 as x→ 0 , (5.25)

which follows from (5.4) and (5.20).
Finally, we consider the boundary conditions for E‡ and G‡. Energy spectrum

E(k, t) is expressed, from (5.3) and (5.20), as

E(k, t) = t2(b−1) k−5/3 E‡(b−1tbk2/3) . (5.26)

If we demand that E(k, t) at large wavenumbers in the inertial range be connected
smoothly with the k−5/3 spectrum which is realized at lower wavenumbers in the
universal range, then E‡ must approach a constant, which we can choose, without
loss of generality, as unity, i.e.

E‡(∞) = 1 . (5.27)

Then, we have

E(k, t) = k−5/3t−2+2b =
(
E0(2−3b)

)−2/3

ε(t)2/3k−5/3
(

= Kε(t)2/3k−5/3, say
)

as k →∞,
(5.28)

where use has been made of (5.10), (5.12), (5.18) and (5.26). Integration of (5.26) with
respect to k together with E(t) =

∫ ∞
0

dkE(k, t) gives

E0 =
3

2b

∫ ∞
0

dx x−2 E‡(x) . (5.29)

Hence, the Kolmogorov constant is represented, from (5.28) and (5.29), as

K =

[
3

2

(
2

b
− 3

) ∫ ∞
0

dx x−2 E‡(x)

]−2/3

. (5.30)

A boundary condition for G‡ follows from initial condition (3.17) as

G‡(x, x) = 1 . (5.31)
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Thus, we have obtained a system of integro-differential equations (5.22)–(5.24) to
be solved with boundary conditions (5.27) and (5.31).

5.2. Kolmogorov constant

In the limit that t′ → ∞, equation (5.23) of the response function becomes

∂

∂t
logG‡(t, t′) = −

∫ ∞
0

dp J(p)

∫ t

t′
dt′′ G‡(pt, pt′′) as t′ → ∞ , (5.32)

where use has been made of∫ t

t′
dt′′ t′′1−1/b E‡(pt′′) G‡(pt, pt′′) = t1−1/b

∫ t

t′
dt′′ G‡(pt, pt′′) as t′ → ∞ . (5.33)

Equation (5.32) with (5.31) permits a solution such as

G‡(t, t′) = G‡∞(t− t′) , (5.34)

where G‡∞ obeys

d

dt
logG‡∞(t) = −

∫ ∞
0

dp J(p)

∫ t

0

dt′ G‡∞(pt′) , (5.35)

with boundary condition

G‡∞(0) = 1 . (5.36)

Notice that (5.35) is identical to (4.12). The functional form of G‡∞ does, therefore,

coincide with that of Q̌†, which is the response function for the stationary case (figure
1)†.

The energy equation (5.22), on the other hand, is reduced to (see Appendix G for
the derivation)

3

2

(
2

b
− 3

)∫ ∞
0

dx x−2 E‡(x)

=

∫ ∞
1

dt

∫ 1

0

dp

∫ t+p

max{t−p,p}
dq t3pq

∫ ∞
0

dt′G‡∞(t2/3t′)G‡∞(p2/3t′)G‡∞(q2/3t′)

×
{[
b̂(t, p, q) + b̂(t, q, p)

]
(pq)−11/3 −

[
b̂(t, p, q) q−11/3 + b̂(t, q, p) p−11/3

]
t−11/3

}
.

(5.37)

Hence, it follows from (5.30) and (5.37) that the Kolmogorov constant K is

† Here, note the difference in the arguments of Q̌† and G
‡
∞. The former is K1/2ε1/3k2/3(t − t′),

while, the latter is K1/2k2/3(ε(t)1/3t− ε(t′)1/3t′)/b (see (4.10) and the first equation in §5.3). However,
these two agree with each other in the limit of t′ → ∞ because

K1/2k2/3(ε(t)1/3t− ε(t′)1/3t′)/b = k2/3(tb − t′b)/b ,

which is shown from (5.10), (5.12), (5.18) and (5.28).
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represented as

K−3/2 =

∫ ∞
1

dt

∫ 1

0

dp

∫ t+p

max{t−p,p}
dq t3pq

∫ ∞
0

dt′G‡∞(t2/3t′)G‡∞(p2/3t′)G‡∞(q2/3t′)

×
{[
b̂(t, p, q) + b̂(t, q, p)

]
(pq)−11/3 −

[
b̂(t, p, q) q−11/3 + b̂(t, q, p) p−11/3

]
t−11/3

}
.

(5.38)

By remembering that G‡∞ is identical to Q̌† and comparing (4.13) with (5.38), we can
conclude that the Kolmogorov constant in decaying turbulence is same as that in
stationary turbulence, i.e. K = 1.722.

5.3. Two-similarity-range solution

Equations (5.22)–(5.24) for the energy-containing range are solved numerically under
boundary conditions (5.27) and (5.31) for two extreme cases of index ζ, i.e. ζ = 2 and
4. In the case of ζ = 2, parameter b is fixed by (5.24a) as b = 4

15
. Equations (5.22) and

(5.23) are then solved iteratively as described in Appendix H. The response function
and the energy spectrum function thus obtained are plotted in figures 5(a) and (b),
respectively. The response function and the energy spectrum function are respectively
written in terms of solutions of (5.22) and (5.23) as

G(k, t, t′) = G‡(τ/b, τ′/b),

E(k, t)
/

(E5/2ε−1) = K (E3/2ε−1k)−5/3 E‡(K1/2(2b−1 − 3)(E3/2ε−1k)2/3),

where use has been made of (4.17), (5.10), (5.12), (5.18), (5.21), (5.26) and (5.28).
Here τ′ = K1/2ε(t′)1/3k2/3t′. The almost equi-distance of the contours of logarithmic
levels in figure 5(a) indicates that the response function decays exponentially with
response time τ − τ′. The characteristic decay time of the response function takes
a non-zero finite value at initial time τ′ = 0 and decreases with time τ′ in this
non-dimensional response time τ − τ′. In the original physical time t, however, it is
a monotonically increasing function of time starting from zero at the initial instant
(figures are omitted). The energy spectrum, shown in figure 5(b), has asymptotic
forms, ∝ k2 and ∝ k−5/3, at small and large wavenumbers respectively as imposed as
the boundary conditions.

In the case of ζ = 4, on the other hand, parameter b is not known a priori but
must be determined iteratively together with E‡ and G‡ (cf. (5.24b)). We obtained
numerically that

b = 0.207 for ζ = 4 , (5.39)

which gives, through (5.18), the power exponent of the energy

σ = 1.38 for ζ = 4 . (5.40)

Interestingly, this value is exactly the same as the one predicted by the EDQNM
theory (Lesieur & Schertzer 1978) as well as by the modified zero-fourth-order
cumulant approximation (Kida 1981). As shown in figures 6(a) and 6(b), the shape
of the response function and the energy spectrum function are qualitatively the same
as for ζ = 2.

As mentioned in the beginning of §5, there are in general no overall similarity
solutions with a single similarity law valid over the entire wavenumber range. Instead,
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Figure 5. Similar solutions in the energy-containing and the inertial ranges of freely decaying
turbulence for ζ = 2. (a) Lagrangian velocity response function G(k, t, t′). Here, τ = K1/2ε(t)1/3k2/3t
and τ′ = K1/2ε(t′)1/3k2/3t′. Contour levels are 10x (x = −0.5,−1,−1.5, · · · ,−4). (b) Three-dimensional
energy spectrum function.
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Figure 6. Same as figure 5 but for ζ = 4.

the energy spectrum obeys different similarity laws in the energy-containing range
and in the universal range, and it is connected smoothly between them. It follows
from (5.10) and (5.12) that the normalized energy and wavenumber depend on time,
in the respective wavenumber ranges, as

E(k, t)

E5/2ε−1
∝ t3σ/2−1,

k

E−3/2ε
∝ t−σ/2+1 (in the energy-containing range) , (5.41a)

E(k, t)

ε1/4ν5/4
∝ t(σ+1)/4,

k

ε1/4ν−1/4
∝ t(σ+1)/4 (in the universal range) . (5.41b)

Note that the two similarity laws coincide with each other only for σ = 1 for which the
energy spectral density diverges at zero wavenumber, or the three-dimensional energy
spectrum behaves as E(k, t) ∝ k (as k → 0). In this case, the total energy decreases in
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inverse proportion to time, which has been observed often in grid-generated turbulence
(see Batchelor 1953).

The time evolution of the energy spectrum with two similarity decay laws is depicted
in the entire wavenumber range for cases ζ = 2 (figure 7a) and 4 (figure 7b). In each
figure, two inserted panels (which are identical to figures 5(b) and 2(a) for ζ = 2,
and 6(b) and 2(a) for ζ = 4 ) represent respectively the energy-containing and the
universal ranges, which translate in time in the directions indicated by arrows. Notice
that the direction of the arrow in the energy-containing range is exactly parallel to
the asymptotic slope at the small wavenumber of the energy spectrum for case ζ = 2,
which exhibits the invariance of the Birkhoff constant, whereas they are slightly
inclined to each other in the case ζ = 4, which implies that the invariance of the
Loitsiansky integral is slightly broken (Batchelor & Proudman 1956).

6. Concluding remarks
One of the most important (at least from a fundamental theoretical point of view)

and unsolved problems in the analytical theories of turbulence is to deduce (a part
of) the statistical properties that turbulence might have from the basic equations,
i.e. the Navier–Stokes equation. Complete information on the statistics is included
in Hopf’s (1952) functional formulation of the probability distribution function of
velocity, which is unfortunately formidable to solve. On the other hand, if we restrict
our interest to a few lower-order moments of velocity which are practically more
important, such as the mean velocity distribution, the velocity correlation function,
and try to construct evolution equations for these moments, then we encounter a
closure problem originating from the nonlinearity in the Navier–Stokes equation.
This problem has long been preventing us from constructing any rigorous (in the
limit of large Reynolds numbers) theories despite much effort by many researchers.
There are quite a few phenomenological theories which predict practically useful
results. Among others, the EDQNM theory, the k-ε and the Reynolds stress models
may be named as most successful ones. Notice that all of these theories have one or
more free parameters to be adjusted for a better agreement with observation.

The current work is one attempt to construct an analytical theory without any
adjustable parameters. The closed system of equations for the Lagrangian velocity
correlation and the response functions derived in this paper by the direct-interaction
approximation (Kraichnan 1959) is exactly same as those equations that were de-
rived before by the reversed expansion method (called LRA by Kaneda 1981). It
may be a hint of the robustness of this theory that two different approaches lead
to the same results. Strictly speaking, the present theory cannot be said to be a
rational approximation because it is based upon several unproved (but intuitively
reasonable) assumptions and procedures summarized in §3.2. Nevertheless, the pre-
dicted energy spectrum for homogeneous isotropic turbulence agrees excellently with
many measurements of real turbulence over the whole universal range without any
adjustable parameters. It is therefore very interesting to check the validity of the basic
assumptions, e.g. by the direct numerical simulation of the Navier–Stokes equation.

Several useful findings obtained by the present theory are summarized as follows.
We have proved within the current closure theory that the form of the energy spectrum
in the universal range is common between a stationary and a decaying turbulence
if we appropriately normalize the energy spectrum and the wavenumber in terms of
the time-dependent energy dissipation rate ε(t). Two similarity-range solutions for
decaying turbulence may serve as reference spectra to be compared with experiments
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Figure 7. Time evolution of the three-dimensional energy spectrum of freely decaying turbulence
with two similarity laws for (a) ζ = 2 and (b) ζ = 4. The two inserted panels represent (I) the
energy-containing and the inertial ranges, and (II) the universal range, respectively. The energy
spectra in these two ranges are connected smoothly in the inertial range between them. The two
ranges move in this double logarithmic scale in the direction indicated by arrows according to the
respective similarity laws.
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if accurate measurements of decaying turbulence becomes possible in the future. The
wavenumber dependence of the eddy viscosity, which is often used in large-eddy
simulation of turbulence, is estimated to give comparable results with other closure
theories, such as the test field model (Kraichnan 1976). The skewness factor of the
velocity derivative is obtained to be equal to −0.66 and is independent of the Reynolds
number. This value is consistent with available experimental data in the Reynolds
number range 103 < Rλ < 2× 104 though it is not known whether there will appear a
significant difference at larger Reynolds numbers. Incidentally, effects of intermittency
of turbulence fluctuations seem to be irrelevant to the lower-order (e.g. second and
third order) moments of velocity considered in the present theory.

The resultant integro-differential equations in the present closure theory look more
involved than the original Navier–Stokes equations. Since, however, the averaged
quantities, which are expected to be smooth both in space and in time, are employed
in the statistical theory, we can take larger mesh sizes both in space and in time in the
statistical theory than in the direct numerical simulation which solves an individual
velocity field of much more complicated spatio-temporal structure. An application to
anisotropic turbulence as well as inhomogeneous turbulence may be tractable next
targets.

This paper is dedicated to Professor K. Gotoh on the 65th anniversary of his birth.
One of the authors (S.G.) would like to thank Professor S. Toh for his encouragement
during this study. We are grateful to Dr S. G. Saddoughi for providing us with their
raw data of the energy spectrum plotted in figure 2(b, c). This work was partially
supported by a Grant-in-Aid for Scientific Research from the Ministry of Education,
Science and Culture.

Appendix A
In §3.1, we introduced a direct-interaction decomposition for the Eulerian velocity

field and constructed the governing equations for its NDI-field and DI-field. Here,
we will adopt it for the Eulerian velocity response function, the position function and
the position response function, i.e.

G̃
(E)
ij (k, t|k′, t′) = G̃

(E0)
ij (k, t|k′, t′‖k0, p0, q0) + G̃

(E1)
ij (k, t|k′, t′‖k0, p0, q0) , (A 1)

ψ̃(k, t|k′, t′) = ψ̃(0)(k, t|k′, t′‖k0, p0, q0) + ψ̃(1)(k, t|k′, t′‖k0, p0, q0) (A 2)

and

Ψ̃i(k, t|k′, k′′, t′) = Ψ̃
(0)
i (k, t|k′, k′′, t′‖k0, p0, q0) + Ψ̃

(1)
i (k, t|k′, k′′, t′‖k0, p0, q0) . (A 3)

Now, we construct the governing equations for the six quantities defined by the above

three decompositions. First, we can show that, from (2.31) and (2.32), G̃(E0)
ij obeys[

∂

∂t
+ νk2

]
G̃

(E0)
ij (k, t|k′, t′‖k0, p0, q0)

= −i

(
2π

L

)3

P̃imn(k)
∑
p

∑
q

(k+p+q=0)

′
ũm(−p, t) G̃(E0)

nj (−q, t|k′, t′‖k0, p0, q0) (A 4)
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with initial condition

G̃
(E0)
ij (k, t′|k′, t′‖k0, p0, q0) =

L3

(2π)6
δij δ

3
k+k′ , (A 5)

while G̃(E1)
ij obeys[
∂

∂t
+ νk2

]
G̃

(E1)
ij (k, t|k′, t′‖k0, p0, q0)

= −i

(
2π

L

)3

P̃imn(k)
∑
p

∑
q

(k+p+q=0)

′
ũm(−p, t) G̃(E1)

nj (−q, t|k′, t′‖k0, p0, q0)

−δ3
k−k0

i

(
2π

L

)3

P̃imn(k0) ũ
(0)
m (−p0, t‖k0, p0, q0) G̃

(E0)
nj (−q0, t|k′, t′‖k0, p0, q0)

−δ3
k−k0

i

(
2π

L

)3

P̃imn(k0) ũ
(0)
m (−q0, t‖k0, p0, q0) G̃

(E0)
nj (−p0, t|k′, t′‖k0, p0, q0)

+δ3
k+k0

i

(
2π

L

)3

P̃imn(k0) ũ
(0)
m (p0, t‖k0, p0, q0) G̃

(E0)
nj (q0, t|k′, t′‖k0, p0, q0)

+δ3
k+k0

i

(
2π

L

)3

P̃imn(k0) ũ
(0)
m (q0, t‖k0, p0, q0) G̃

(E0)
nj (p0, t|k′, t′‖k0, p0, q0)

+ (p0 → q0 → k0 → p0) (A 6)

with initial condition

G̃
(E1)
ij (k, t′|k′, t′‖k0, p0, q0) = 0 , (A 7)

where higher-order terms of the DI-field have been neglected (Assumption 1).
Next, the time evolution of the position function is derived from (2.22) and (2.23)

as

∂

∂t
ψ̃(0)(k, t|k′, t′‖k0, p0, q0) = −i kj

(
2π

L

)3 ∑
p

∑
q

(k+p+q=0)

′
ũj(−p, t) ψ̃(0)(−q, t|k′, t′‖k0, p0, q0)

(A 8)

with initial condition

ψ̃(0)(k, t′|k′, t′‖k0, p0, q0) =
L3

(2π)6
δ3
k+k′ , (A 9)

and

∂

∂t
ψ̃(1)(k, t|k′, t′‖k0, p0, q0)

= −i kj

(
2π

L

)3 ∑
p

∑
q

(k+p+q=0)

′
ũj(−p, t) ψ̃(1)(−q, t|k′, t′‖k0, p0, q0)

−δ3
k−k0

i k0j

(
2π

L

)3

ũ
(0)
j (−p0, t‖k0, p0, q0) ψ̃

(0)(−q0, t|k′, t′‖k0, p0, q0)
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−δ3
k−k0

i k0j

(
2π

L

)3

ũ
(0)
j (−q0, t‖k0, p0, q0) ψ̃

(0)(−p0, t|k′, t′‖k0, p0, q0)

+δ3
k+k0

i k0j

(
2π

L

)3

ũ
(0)
j (p0, t‖k0, p0, q0) ψ̃

(0)(q0, t|k′, t′‖k0, p0, q0)

+δ3
k+k0

i k0j

(
2π

L

)3

ũ
(0)
j (q0, t‖k0, p0, q0) ψ̃

(0)(p0, t|k′, t′‖k0, p0, q0)

+ (p0 → q0 → k0 → p0) , (A 10)

with initial condition

ψ̃(1)(k, t′|k′, t′‖k0, p0, q0) = 0 . (A 11)

Finally, for the position response function, we obtain, from (2.37) and (2.38),

∂

∂t
Ψ̃

(0)
i (k, t, |k′, k′′, t′‖k0, p0, q0)

= −i ka

(
2π

L

)3 ∑
p

∑
q

(k+p+q=0)

′
ũa(−p, t) Ψ̃ (0)

i (−q, t|k′, k′′, t′‖k0, p0, q0)

−i ka

(
2π

L

)3 ∑
p

∑
q

(k+p+q=0)

G̃
(E)
ai (−p, t|k′′, t′) ψ̃(−q, t|k′, t′) (A 12)

with

Ψ̃
(0)
i (k, t′|k′, k′′, t′‖k0, p0, q0) = 0 (A 13)

and

∂

∂t
Ψ̃

(1)
i (k, t, |k′, k′′, t′‖k0, p0, q0)

= −i ka

(
2π

L

)3 ∑
p

∑
q

(k+p+q=0)

′
ũa(−p, t) Ψ̃ (1)

i (−q, t|k′, k′′, t′‖k0, p0, q0)

−δ3
k−k0

i k0a

(
2π

L

)3

ũ(0)
a (−p0, t‖k0, p0, q0) Ψ̃

(0)
i (−q0, t|k′, k′′, t′‖k0, p0, q0)

−δ3
k−k0

i k0a

(
2π

L

)3

ũ(0)
a (−q0, t‖k0, p0, q0) Ψ̃

(0)
i (−p0, t|k′, k′′, t′‖k0, p0, q0)

+δ3
k+k0

i k0a

(
2π

L

)3

ũ(0)
a (p0, t‖k0, p0, q0) Ψ̃

(0)
i (q0, t|k′, k′′, t′‖k0, p0, q0)

+δ3
k+k0

i k0a

(
2π

L

)3

ũ(0)
a (q0, t‖k0, p0, q0) Ψ̃

(0)
i (p0, t|k′, k′′, t′‖k0, p0, q0)

+ (p0 → q0 → k0 → p0) (A 14)

with

Ψ̃
(1)
i (k, t′|k′, k′′, t′‖k0, p0, q0) = 0 . (A 15)

In the derivation of (A 10) and (A 14), higher-order terms of the DI-field have been
neglected (Assumption 1).
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Appendix B

In performing Procedure 2, the DI-fields must be represented in terms of the

NDI-fields. Here, we will give the expressions for G̃(E1)
ij , ψ̃(1) and Ψ̃ (1)

i .

First, by using (A 4) and (A 7), we can solve (A 6) to obtain

G̃
(E1)
ij (k, t|k′, t′‖k0, p0, q0) = i

(2π)9

L6
P̃abc(k)

∫ t

t′
dt′′G̃(E0)

ia (k, t| − k, t′′‖k0, p0, q0)

×
[
−δ3

k−k0
ũ

(0)
b (−p0, t

′′‖k0, p0, q0)G̃
(E0)
cj (−q0, t

′′|k′, t′‖k0, p0, q0)

−δ3
k−k0

ũ
(0)
b (−q0, t

′′‖k0, p0, q0)G̃
(E0)
cj (−p0, t

′′|k′, t′‖k0, p0, q0)

−δ3
k+k0

ũ
(0)
b (p0, t

′′‖k0, p0, q0)G̃
(E0)
cj (q0, t

′′|k′, t′‖k0, p0, q0)

−δ3
k+k0

ũ
(0)
b (q0, t

′′‖k0, p0, q0)G̃
(E0)
cj (p0, t

′′|k′, t′‖k0, p0, q0)

+(p0 → q0 → k0 → p0)

]
. (B 1)

Next, it follows from (A 8), (A 10) and (A 11) that

ψ̃(1)(k, t|k′, t′‖k0, p0, q0) = i kj
(2π)9

L6

∫ t

t′
dt′′ ψ̃(0)(k, t| − k, t′′‖k0, p0, q0)

×
[
−δ3

k−k0
ũ

(0)
j (−p0, t

′′‖k0, p0, q0) ψ̃
(0)(−q0, t

′′|k′, t′‖k0, p0, q0)

− δ3
k−k0

ũ
(0)
j (−q0, t

′′‖k0, p0, q0) ψ̃
(0)(−p0, t

′′|k′, t′‖k0, p0, q0)

− δ3
k+k0

ũ
(0)
j (p0, t

′′‖k0, p0, q0) ψ̃
(0)(q0, t

′′|k′, t′‖k0, p0, q0)

− δ3
k+k0

ũ
(0)
j (q0, t

′′‖k0, p0, q0) ψ̃
(0)(p0, t

′′|k′, t′‖k0, p0, q0)

+ (p0 → q0 → k0 → p0)

]
. (B 2)

Finally, it is shown from (A 12), (A 14) and (A 15) that

Ψ̃
(1)
i (k, t|k′, k′′, t′‖k0, p0, q0)

= i ka
(2π)9

L6

∫ t

t′
dt′′ ψ̃(0)(k, t| − k, t′′‖k0, p0, q0)

×
[
− δ3

k−k0
ũ(0)
a (−p0, t

′′‖k0, p0, q0) Ψ̃
(0)
i (−q0, t

′′|k′, k′′, t′‖k0, p0, q0)

− δ3
k−k0

ũ(0)
a (−q0, t

′′‖k0, p0, q0) Ψ̃
(0)
i (−p0, t

′′|k′, k′′, t′‖k0, p0, q0)

− δ3
k+k0

ũ(0)
a (p0, t

′′‖k0, p0, q0) Ψ̃
(0)
i (q0, t

′′|k′, k′′, t′‖k0, p0, q0)

− δ3
k+k0

ũ(0)
a (q0, t

′′‖k0, p0, q0) Ψ̃
(0)
i (p0, t

′′|k′, k′′, t′‖k0, p0, q0)

+ (p0 → q0 → k0 → p0)

]
. (B 3)
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Appendix C
We derive here relations (3.5)–(3.8). First, by taking an ensemble average of (A 8)

and using Assumption 3, we obtain

∂

∂t
ψ̃(0)(k, t|k′, t′‖k0, p0, q0) = 0 , (C 1)

which leads to (3.6) under initial condition (A 9) of ψ̃(0). Next, an ensemble average
of (2.39) gives, under Assumptions 1 and 3, that

G̃
(E0)
ij (k, t|k′, t′‖k0, p0, q0)

=
(2π)6

L3

∑
k′′

G̃
(L0)
ij (t|k′′, k′, t′‖k0, p0, q0) ψ̃

(0)(k, t| − k′′, t′‖k0, p0, q0) , (C 2)

where G̃(L0)
ij denotes the NDI-field of G̃(L)

ij . By substituting (3.6) into the above equation,
we obtain (3.5). For (3.7), we take an ensemble average of (A 12) to obtain

∂

∂t
Ψ̃

(0)
i (k, t, |k′, k′′, t′‖k0, p0, q0)

= −i ka

(
2π

L

)3 ∑
p

∑
q

(k+p+q=0)

G̃
(E0)
ai (−p, t|k′′, t′‖k0, p0, q0) ψ̃

(0)(−q, t|k′, t′‖k0, p0, q0) , (C 3)

where Assumptions 1 and 3 have been employed. Equation (3.7) follows by substituting
(3.5) and (3.6) into (C 3) and integrating it under initial condition (A 13). Finally, in
order to show (3.8) we note the identity

ũ
(0)
i (k, t‖k0, p0, q0) ũ

(0)
j (−k, t′‖k0, p0, q0) = P̃ia(k)

(2π)6

L3

×
∑
k′

ṽ
(0)
a (t|k′, t′‖k0, p0, q0) ψ̃

(0)(k, t| − k′, t′‖k0, p0, q0) ũ
(0)
j (−k, t′‖k0, p0, q0) , (C 4)

which follows from continuity equation (2.21) and relation (2.19) between ũi and ṽj .
Here, ṽ(0)

a denotes the NDI-field of the Lagrangian velocity. By substituting (3.6) and

replacing (ũ(0)
i , ṽ(0)

i ) by (ũi, ṽi) (Assumption 1), we obtain

ũ
(0)
i (k, t‖k0, p0, q0) ũ

(0)
j (−k, t′‖k0, p0, q0) = P̃ia(k) ṽa(t|k, t′) ũj(−k, t′) . (C 5)

Then, (3.8) follows from (C 5), (2.8) and (2.29).

Appendix D
The deduction of (3.11) from (3.10) is described here. The first term on the right-

hand side of (3.10) vanishes because of Assumption 2. On substitution of

ũ(1)
n (−q, t‖k, p, q)

= i
(2π)9

L6
P̃abc(q)

∫ t

t0

dt′ G̃(E0)
na (−q, t|q, t′‖k, p, q) ũ(0)

b (p, t′‖k, p, q) ũ(0)
c (k, t′‖k, p, q),

(D 1)

which is derived from (3.4), in the second term of (3.10), we obtain
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The second term on the right-hand side of (3.10)

=
(2π)15

L12
P̃imn(k)

∑
p

∑
q

(k+p+q=0)

P̃abc(q)

∫ t

t0

dt′ G̃(E0)
na (−q, t|q, t′‖k, p, q)

×ũ(0)
m (−p, t‖k, p, q) ũ(0)

b (p, t′‖k, p, q) ũ(0)
j (−k, t‖k, p, q) ũ(0)

c (k, t′‖k, p, q). (D 2)

Assumptions 2 and 3, (3.5) and (3.8) then convert (D 2) into

The second term on the right-hand side of (3.10)

=
(2π)15

L12
P̃imn(k)

∑
p

∑
q

(k+p+q=0)

P̃abc(q)

∫ t

t0

dt′ G̃(E0)
na (−q, t|q, t′‖k, p, q)

× ũ(0)
m (−p, t‖k, p, q) ũ(0)

b (p, t′‖k, p, q) ũ
(0)
j (−k, t‖k, p, q) ũ(0)

c (k, t′‖k, p, q)

=
(2π)9

L6
P̃imn(k)

∑
p

∑
q

(k+p+q=0)

P̃abc(q)

×
∫ t

t0

dt′ G̃(L0)
na (t| − q, q, t′‖k, p, q) Q̃mb(−p, t, t′) Q̃jc(−k, t, t′) . (D 3)

Similarly, the third term reduces to

The third term on the right-hand side of (3.10)

=
1

2

(2π)9

L6
P̃imn(k)

∑
p

∑
q

(k+p+q=0)

P̃abc(k)

×
∫ t

t0

dt′ G̃(L0)
ja (t| − k, k, t′‖k, p, q) Q̃mb(−p, t, t′) Q̃nc(−q, t, t′) . (D 4)

Combination of (D 3) and (D 4) leads to[
∂

∂t
+ νk2

]
Ṽ ij(k, t, t) =

1

2

(2π)9

L6
P̃imn(k)

∑
p

∑
q

(k+p+q=0)

∫ t

t0

dt′ Q̃mb(−p, t, t′)

×
{

2P̃abc(q) G̃(L0)
na (t| − q, q, t′|k, p, q) Q̃jc(−k, t, t′)

+P̃abc(k) G̃(L0)
ja (t| − k, k, t′‖k, p, q) Q̃nc(−q, t, t′)

}
+ (i↔ j , k→ −k) . (D 5)

Multiplying the above equation by P̃αi(k), replacing suffixes appropriately and using
(2.29) and (3.9), we obtain (3.11).

Appendix E
We derive here equations (3.12) and (3.13) for the two-point two-time Lagrangian

velocity correlation and the response functions.
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As for the two-point two-time Lagrangian velocity correlation function, the viscous
term of (2.27) is expressed, under Assumption 1, as

The viscous term of (2.27) =

− (2π)9

L6
ν
∑
p

p2 ũ
(0)
i (p, t‖k0, p0, q0) ψ̃

(0)(−p, t|k, t′‖k0, p0, q0) ũ
(0)
j (−k, t′‖k0, p0, q0), (E 1)

which is rewritten, using Assumption 3, (3.6) and (3.8), as

The viscous term of (2.27) = −νk2 Q̃ij(k, t, t
′) . (E 2)

The nonlinear term of (2.27) is approximated, under Assumption 1, by

The nonlinear term of (2.27) = −i
(2π)12

L9

∑
p

∑
q

∑
r

(p+q+r=0)

rirmrn

r2

×
[
ũ

(0)
m (p, t‖p, q, r) ũ(0)

n (q, t‖p, q, r) ψ̃(0)(r, t|k, t′‖p, q, r) ũ(0)
j (−k, t′‖p, q, r)

+2ũ(1)
m (p, t‖p, q, r) ũ(0)

n (q, t‖p, q, r) ψ̃(0)(r, t|k, t′‖p, q, r) ũ(0)
j (−k, t′‖p, q, r)

+ ũ
(0)
m (p, t‖p, q, r) ũ(0)

n (q, t‖p, q, r) ψ̃(0)(r, t|k, t′‖p, q, r) ũ(1)
j (−k, t′‖p, q, r)

+ ũ
(0)
m (p, t‖p, q, r) ũ(0)

n (q, t‖p, q, r) ψ̃(1)(r, t|k, t′‖p, q, r) ũ(0)
j (−k, t′‖p, q, r)

]
. (E 3)

The first term of the above equation vanishes because of (3.6) and Assumptions 2
and 3. It is easily shown that both the second and third terms are proportional to ki.
By substituting (B 2) in the fourth term, and using Assumptions 2, 3, (3.6) and (3.8),
we obtain

The fourth term of (E 3)

= −2

(
2π

L

)3 ∑
p

∑
q

(k+p+q=0)

qaqmqnqi

q2

∫ t

t′
dt′′ Q̃ma(p, t, t

′′) Q̃nj(k, t, t
′) . (E 4)

Therefore, (2.27) reduces to

∂

∂t
Ṽ ij(k, t, t

′) = − νk2 Q̃ij(k, t, t
′)

− 2

(
2π

L

)3 ∑
p

∑
q

(k+p+q=0)

qaqmqnqi

q2

∫ t

t′
dt′′ Q̃ma(p, t, t

′′) Q̃nj(k, t, t
′)

+ terms which are proportional to ki . (E 5)

By multiplying the above equation by P̃li(k), and noting that P̃li(k) ki = 0 and (2.29),
we arrive at (3.12).
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For the Lagrangian velocity response function we have only to deal with an
ensemble average of (2.35) for k′ = −k, i.e.

∂

∂t
G̃

(L)
ij (t|k,−k, t′) = −ν (2π)6

L3

×
∑
k′′

k′′2

[
G̃

(E)
ij (k′′, t| − k, t′) ψ̃(−k′′, t|k, t′) + ũi(k

′′, t) Ψ̃j(−k′′, t|k,−k, t′)
]

−i
(2π)9

L6

∑
p

∑
q

∑
r

(p+q+r=0)

rirmrn

r2

×
[

2ũm(p, t) G̃(E)
nj (q, t| − k, t′) ψ̃(r, t|k, t′) + ũm(p, t) ũn(q, t) Ψ̃j(r, t|k,−k, t′)

]
, (E 6)

because only this combination appears in the equations for the correlation function
(3.11) and (3.12). The viscous term of this equation is calculated, using Assumptions
1 and 3, (3.5) and (3.6), to be

The viscous term of (E 6)

= −ν (2π)6

L3

∑
k′′

k′′2 G̃
(E0)
ij (k′′, t| − k, t′‖k0, p0, q0) ψ̃

(0)(−k′′, t|k, t′‖k0, p0, q0)

= −ν k2 G̃
(L0)
ij (t|k,−k, t‖k0, p0, q0) . (E 7)

The first term in the second brackets of (E 6) is rewritten as

The first term in the second brackets of (E 6) = −2i
(2π)9

L6

∑
p

∑
q

∑
r

(p+q+r=0)

rirmrn

r2

×
[
ũ

(0)
m (p, t‖p, q, r) G̃(E0)

nj (q, t| − k, t′‖p, q, r) ψ̃(0)(r, t|k, t′‖p, q, r)

+ ũ
(1)
m (p, t‖p, q, r) G̃(E0)

nj (q, t| − k, t′‖p, q, r) ψ̃(0)(r, t|k, t′‖p, q, r)

+ ũ
(0)
m (p, t‖p, q, r) G̃(E1)

nj (q, t| − k, t′‖p, q, r) ψ̃(0)(r, t|k, t′‖p, q, r)

+ ũ
(0)
m (p, t‖p, q, r) G̃(E0)

nj (q, t| − k, t′‖p, q, r) ψ̃(1)(r, t|k, t′‖p, q, r)
]
, (E 8)

where higher-order terms of the DI-field have been neglected (Assumption 1). Thanks

to Assumption 3 and ũ(0)
i = 0, the first term of (E 8) vanishes. For the other terms, we

employ the procedures described in §3.2. On substitution of (3.4) in the second term
to eliminate ũ(1)

m , we can show that it vanishes because of Assumptions 2 and 3. For
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the third term, we use (B 1) to eliminate G̃(E1)
nj . Then, Assumption 3, (3.5), (3.6) and

(3.8) reduce it to

The third term of (E 8) = −2
(2π)9

L6

kikmkn

k2

∑
p

∑
q

(k+p+q=0)

P̃abc(q)

×
∫ t

t′
dt′′ G̃(L0)

na (t| − q, q, t′′‖k, p, q) G̃(L0)
cj (t′′|k,−k, t′‖k, p, q) Q̃mb(−p, t, t′′). (E 9)

For the fourth term, (B 2) is used to eliminate ψ̃(1). Then, we can rewrite it, using
Assumptions 2 and 3, (3.5), (3.6) and (3.8), as

The fourth term of (E 8) = −2

(
2π

L

)3 ∑
p

∑
q

(k+p+q=0)

qiqmqnqa

q2

×
∫ t

t′
dt′′ G̃(L0)

nj (t|k,−k, t′‖k, p, q) Q̃ma(p, t, t
′′) . (E 10)

Finally, we calculate the second term in the second brackets of (E 6). By neglecting
higher-order terms of the DI-field under Assumption 1, we obtain

The second term in the second brackets of (E 6) = −i
(2π)9

L6

∑
p

∑
q

∑
r

(p+q+r=0)

rirmrn

r2

×
[
ũ

(0)
m (p, t‖p, q, r) ũ(0)

n (q, t‖p, q, r) Ψ̃ (0)
j (r, t|k,−k, t′‖p, q, r)

+2 ũ(1)
m (p, t‖p, q, r) ũ(0)

n (q, t‖p, q, r) Ψ̃ (0)
j (r, t|k,−k, t′‖p, q, r)

+ ũ
(0)
m (p, t‖p, q, r) ũ(0)

n (q, t‖p, q, r) Ψ̃ (1)
j (r, t|k,−k, t′‖p, q, r)

]
. (E 11)

The first term of this equation vanishes because ũ(0)
m (p‖p, q, r) has no correlation with

ũ(0)
n (q‖p, q, r) (Assumption 2). Next, we substitute (3.4) into the second term, and (B 3)

into the third term to eliminate quantities of the DI-field. Then, it is easy to show
that these terms vanish under Assumptions 2 and 3. The second term of the second
brackets of (E 6), therefore, does not contribute at all to the governing equation of
the Lagrangian velocity response function. Combination of (E 7), (E 9) and (E 10)
converts (E 6) into

∂

∂t
G̃

(L)
ij (t|k,−k, t′) + ν k2 G̃

(L0)
ij (t|k,−k, t‖k0, p0, q0) = −2

(2π)9

L6

kikmkn

k2

∑
p

∑
q

(k+p+q=0)

P̃abc(q)

×
∫ t

t′
dt′′ G̃(L0)

na (t| − q, q, t′′‖k, p, q) G̃(L0)
cj (t′′|k,−k, t′‖k, p, q) Q̃mb(−p, t, t′′)

−2

(
2π

L

)3 ∑
p

∑
q

(k+p+q=0)

qiqmqnqa

q2

∫ t

t′
dt′′ G̃(L0)

nj (t|k,−k, t′‖k, p, q) Q̃ma(p, t, t
′′) . (E 12)

By multiplying this equation by P̃jα(k) and using (3.9), we obtain (3.13).
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Appendix F
We assume that in the universal range of decaying turbulence Q(k, t, t) is charac-

terized by k, ε(t) and ν, and therefore written as

Q(k, t, t) = ν11/4 ε(t)−1/4 Q̂(B ν4/3 ε(t)−1/4 k ) , (F 1)

where B is a non-dimensional constant. Then, it can be shown, under the assumption
of a power decay law (5.10) of energy, that in (3.22) the time-derivative term is
smaller in magnitude than the viscous and the nonlinear terms by Re−1/2. Hence, in
the limit of Re→ ∞, Q(k, t, t) is independent of time in this range, which also allows
a stationary form such as G(k, t, t′) = Ǧ(k, t − t′) in the governing equation (3.16) of
G(k, t, t′). In conclusion, the solution for decaying turbulence in this range is identical
to that for stationary turbulence.

Appendix G
Equation (5.37) is derived here. Successive changes of variables in (5.22), t′ to tt′, t

to t2/3 and (pt, qt) to (p, q), lead to

t4/3b−2 ∂

∂t

(
t4/3−4/3b E‡(t2/3)

)
= 2

3
t3
∫∫
4t

dpdq pq b̂(t, p, q)

∫ 1

0

dt′ t′3−3/b

×G‡(t2/3, t2/3t′)G‡(p2/3, p2/3t′)G‡(q2/3, q2/3t′) q−11/3 E‡(q2/3t′)

×
[
p11/3 E‡(p2/3t′) − t11/3 E‡(t2/3t′)

]
. (G 1)

By integrating both sides of the above equation from 0 to infinity with respect to t,
we obtain

LHS = −
(

2

b
− 3

)∫ ∞
0

dt t−2 E‡(t) , (G 2)

RHS = − lim
T→∞

2
3
T 2/3

∫ ∞
1

dt

∫ ∞
0

dp

∫ t+p

max{t−p,p}
dq t3pq

∫ 1

0

dt′ t′3−3/b

× G‡((tT )2/3, (tT )2/3t′) G‡((pT )2/3, (pT )2/3t′) G‡((qT )2/3, (qT )2/3t′)

×
{ [

b̂(t, p, q) + b̂(t, q, p)

]
(pq)−11/3 E‡((pT )2/3t′) E‡((qT )2/3t′)

−
[
b̂(t, p, q) q−11/3 E‡((qT )2/3t′) + b̂(t, q, p) p−11/3 E‡((pT )2/3t′)

]
× t−11/3 E‡((tT )2/3t′)

}
. (G 3)

By taking account of (5.27) and (5.34), we can calculate (G 3) to be

RHS = −2

3

∫ ∞
1

dt

∫ 1

0

dp

∫ t+p

max{t−p,p}
dq t3pq

∫ ∞
0

dt′ G‡∞(t2/3t′) G‡∞(p2/3t′) G‡∞(q2/3t′)

×
{[
b̂(t, p, q) + b̂(t, q, p)

]
(pq)−11/3 −

[
b̂(t, p, q) q−11/3 + b̂(t, q, p) p−11/3

]
t−11/3

}
.

(G 4)

Equation (5.37) follows from (G 2) and (G 4).
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Appendix H
For the purpose of numerical computation of (5.22)–(5.24), it is convenient to

introduce H by

G‡(t, t′) = H(t− t′, t′) , (H 1)

because the difference between two times in G‡ has the more important meaning of
the response time. Substituting (H 1) into (5.22) and (5.23), we obtain

E‡(t) = − 9
4
t−2+2/b

∫ ∞
0

dk

∫ ∞
2−2/3

dq

∫ q

|q3/2−k3/2|2/3
dp

∫ ∞
max{0, t−kk }

ds (s+ 1)1/b−1 k8−2/b (pq)2

×H (ks, k) H (ps, p) H (qs, q)

[
E‡(p)E‡(q) (pq)−11/2

×
{
b̂(k3/2, p3/2, q3/2) + b̂(k3/2, q3/2, p3/2)− E‡(k) k−11/2

}
×
{
E‡(p) p−11/2 b̂(k3/2, q3/2, p3/2) + E‡(q) q−11/2 b̂(k3/2, p3/2, q3/2)

}]
(H 2)

and

H(t, t′) = exp

[
−
∫ ∞

0

dt′′
∫ (tt′′)/(t′)

0

ds

∫ (t′′)/(t′)

(s+t′′)/(t+t′)

dpJ(p) p−2

[
s

t′′
+ 1

]1/b−1

E‡(t′′)H(s, t′′)

]
,

(H 3)

respectively. Boundary condition (5.31) is written as

H(0, t′) = 1, (H 4)

while asymptotic condition (5.34) at large time is represented by

H(t, t′)→ G‡∞(t) as t′ → ∞ . (H 5)

Relation (5.24) between b and ζ is rewritten as

b =


4

3(ζ + 3)
(2 6 ζ < 4),[

21

4
− 7

10E‡0

∫ ∞
0

dt

∫ ∞
0

dk(k + t)3/b−23/2t3−3/b
(
H(k, t)E‡(t)

)2

]−1

(ζ = 4).

(H 6)

We solve numerically the set of integro-differential equations (H 2), (H 3) and (H 6)
under boundary conditions (5.27) and (H 4), and asymptotic conditions (5.25) and
(H 5). Equations (H 3) and (H 6) are solved by an iteration method, while (H 2) by
the Newton–Raphson method.
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